
GANGSTER: an Automated Negotiator
Applying Genetic Algorithms

Dave de Jonge and Carles Sierra

Abstract Negotiation is an essential skill for agents in a multiagent system. Much
work has been published on this subject, but traditional approaches assume nego-
tiators are able to evaluate all possible deals and pick the one that is best according
to some negotiation strategy. Such an approach fails when the set of possible deals
is too large to analyze exhaustively. For this reason the Annual Negotiating Agents
Competition of 2014 has focused on negotiations over very large agreement spaces.
In this paper we present a negotiating agent that explores the search space by means
of a Genetic Algorithm. It has participated in the competition successfully and fin-
ished in 2nd and 3rd place in the two categories of the competition respectively.

1 Introduction

In this paper we present the agent that we have developed for the Annual Negotiat-
ing Agents Competition 2014 (ANAC’14). Our agent is called GANGSTER, which
stands for Genetic Algorithm NeGotiator Subject To alternating offERs.

Theoretical work on negotiations has been published as early as 1950 [9]. The
study of negotiations from an algorithmic point of view however is a much more
recent topic. In [3, 4] the authors propose a strategy that amounts to determining
for each time t which utility value should be demanded from the opponent (the
aspiration level). However, they do not take into account that one first needs to find
a deal that indeed yields that aspired utility level. They simply assume that such a
deal always exists, and that the negotiator can find it without any effort.

To overcome that shortcoming, work on negotiations on large spaces was done in
[7, 8]. They chose a model in which utility functions are nonlinear over an abstract
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vector space that represents the set of possible deals, but such that for any given
deal x its utility value can still be calculated by solving a linear equation. A similar
model is also used for the ANAC’14 competition, as we will see in Section 2.2.

The idea of large spaces with non-linear functions was carried even further by
ourselves in [5, 6], where we introduced the Negotiating Salesmen Problem: a ne-
gotiation scenario in which not only the number of possible deals is very large, but,
given a deal it is also very hard to determine its utility value as it requires solving a
Traveling Salesman Problem. In order to tackle that domain we applied a Branch &
Bound algorithm adapted to negotiations.

In this paper however, we apply Genetic Algorithms to perform the search. Fur-
thermore, we present a new acceptance strategy that introduces the concept of re-
proposing, and we present a new bargaining strategy that not only depends on an
aspiration level, but also on the distance between a new proposal and the proposals
that have been made before.

2 Setup of the Competition

Before explaining the algorithm, we first explain how the ANAC’14 competition
was set up. We use the notation [a,b], where a and b are integers, to denote the set
of integers z such that a≤ z≤ b. We use α1 to denote our agent and α2 to denote its
opponent. Furthermore, we use H1→2(t) to denote the set of proposals made by α1
until time t, and H2→1(t) to denote the set of proposals made by α2 until time t.

2.1 The Protocol

In the competition each agent engaged in several negotiation sessions. In each ses-
sion two agents were paired to negotiate against each other. Each session would fin-
ish as soon as the agents made an agreement, or when the deadline of 180 seconds
had passed. The agents had to negotiate according to the alternating offers proto-
col [10]. One of the two agents begins. That agent may pick one deal x from the
agreement space Agrn (see Sect. 2.2) and propose it to the other. The second agent
may then either accept that proposal, in which case the session finishes, or may pick
another deal from the agreement space and propose it to the first agent. This then
continues: agents alternately take turns, and in each turn the agent whose turn it is
may make a new proposal or accept the last proposal made by the other agent. When
it is agent α1’s turn agent α2 cannot do anything, and vice versa. Furthermore, an
agent may take as much time as he likes before making the next proposal (or accept-
ing the previous proposal). Therefore, the agent’s decision is not only what deal to
propose (or accept) but also when to propose. More precisely: when an agent finds
a potential deal to propose it should determine whether it will propose that deal or
whether it should continue searching for a better deal.
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If the deadline passes without any agreement having been made each agent re-
ceives a certain number of points, called its reservation value. Otherwise, each agent
receives the amount of points equal to its utility value fi(x) (see Sect. 2.2) for the
deal x they agreed upon.

2.2 The Agreement Space

In each session the space of possible deals that can be made by the agents (the
agreement space) Agrn is represented by an n-dimensional vector space, where n
varies per session and can be as high as 50. For each vector entry there are 10
possible values.

Agrn = [0,9]n

For a vector x ∈ Agrn we use the notation x j to denote its j-th entry.

x = (x1,x2, ...xn)

Definition 1. A rectangular subspace s is a subset of Agrn such that for each j ∈
[1,n] there are two integers a j,b j ∈ [0,9] with:

x ∈ s iff ∀ j ∈ [1,n] : x j ∈ [a j,b j]

Definition 2. A constraint is c a pair (sc,vc) where sc is a rectangular subset of
Agrn and vc is a real number. We say a deal x ∈ Agrn satisfies a constraint c, iff
x ∈ sc. The characteristic function f c of a constraint c is defined as:

f c(x) =

{
vc if x ∈ sc

0 if x 6∈ sc

For each agent αi ∈ {α1,α2} there is a set of constraints Ci, that determine the
agent’s utility function fi according to:

fi(x) = ∑
c∈Ci

f c(x)

Both sets of constraints however, remain hidden for both agents, so an agent
cannot directly calculate its own utility values. Instead, each agent αi has access to
an ‘oracle’ that, for any given deal x ∈ Agrn returns its corresponding utility value
fi(x). The agents cannot know anything about their opponents’ utility functions (i.e.
agent α1 can request f1(x) from its oracle, but not f2(x)). Note that, in principle,
an agent can request the value of each deal in the agreement space. However, since
the agreement spaces are extremely large (consisting of up to 1050 deals) this is
obviously infeasible, so the agents can only explore a tiny fraction of the agreement
space. In the rest of this paper, whenever we use the term ‘utility’ without specifying
an agent, we mean the utility function f1 of our agent α1.



4 Dave de Jonge and Carles Sierra

3 Overview of the Algorithm

Let us first give a global overview of the algorithm before we go into more detail on
each of its steps. Each turn the algorithm takes the following steps:

1. Calculate the aspiration value and max distance (Alg. 1, lines 1-2).
2. Decide whether to accept the previous offer made by the opponent (Alg. 1, lines

3-11).
3. Apply a Global genetic algorithm to sample the agreement space, and store the

10 proposals with highest utility (Alg. 1, lines 12-13).
4. Apply a Local genetic algorithm to sample the agreement space, and store the 10

proposals with highest utility (Alg. 1, lines 14-15).
5. Apply the offer strategy to pick the “best” proposal found by the GAs in the

current round or any of the previous rounds (Alg. 1, line 16).

Algorithm 1 chooseAction(t, x, z)
Require: m1,m2
1: m1← calculateAspirationValue(t)
2: m2← calculateMaxDistance(t)
3: if f1(x)≥ m1 then
4: accept(x)
5: return
6: else
7: if f1(z)≥ m1 then
8: propose(z)
9: return

10: end if
11: end if
12: newFound← globalGeneticAlgorithm()
13: found← found ∪ newFound
14: newFound← localGeneticAlgorithm(x)
15: found← found ∪ newFound
16: proposeBest(found, m1, m2)

4 Acceptance Strategy

The acceptance strategy of GANGSTER is given in lines 3-11 of Algorithm 1. It
depends on a function of time m1(t) that we call our aspiration level. We do not
have space here to explain how it is calculated, but the only important thing to know
is that it is a decreasing function of time that represents our agent’s willingness to
concede.

Let x ∈ Agrn denote the last offer proposed by the opponent, and let z ∈ Agrn
denote the offer with highest utility among all deals made by the opponent in the
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earlier rounds:
∀z′ ∈H2→1(t) : f1(z)≥ f1(z′)

If the utility f1(x) ≥ m1, then our agent immediately accept the proposal made by
the opponent. If not, then our agent compares its aspiration level with the highest
utility offered by the opponent so far, f1(z). If f1(z) ≥ m1 then α1 reproposes that
deal to the opponent. Note that this means that z is a deal that was earlier rejected
by our agent (because at that time its aspiration level was higher), but now that
the deadline has come closer it has lowered its standards since the risk of failure has
become bigger and is now willing to accept it after all. Unfortunately, the alternating
offers protocol does not allow an agent to accept a proposal from an earlier round,
so it needs to be proposed again. If, on the other hand f1(z) < m1 it means that it
does not consider z good enough (yet), so it will apply the search strategy (Sec. 5)
and offer strategy (Sec. 6) to determine a new proposal to make.

Let us now compare this strategy with existing acceptance strategies. In [1] a
study was made of several acceptance strategies. The most common acceptance
strategy they identified is named ACprev(1,0). In that strategy the agent α1 compares
the utility of the opponent’s offer f1(x) with the utility f1(w) of the proposal w that
agent α1 would make if it would not accept x.

Our strategy is a variation of that strategy. However, instead of comparing the
utilities of two proposals, our agent compares the utility of the opponent’s proposal
f1(x) with its aspiration level m1(t). The reason for applying this strategy is that
α1 can already determine whether or not to accept the opponent’s offer x before
it has determined its own proposal w. This has two advantages: firstly, this may
save some time because determining the next proposal w can be time consuming.
Secondly, it may not always be possible to find a deal w for which the utility is
higher than the aspiration level. For example, the agent may only be able to find
a deal w with utility f1(w) = m1− 0.1. If it would apply ACprev(1,0) it would not
accept the opponent’s proposal x, even though x yields a utility value higher than
our agent’s aspiration level. That would be suboptimal, since the aspiration level is
by definition the amount of utility that the agent considers high enough to accept.

Another improvement with respect to the ACprev(1,0) strategy is that we intro-
duce the concept of reproposing (Alg. 1, lines 6-11). After all, the fact that our agent
rejected an earlier proposal from the opponent does not have to mean it would never
accept it. The great advantage of reproposing, is that we know that the opponent has
already proposed it, and therefore it is very likely that he will accept it. Moreover,
the fact that it was already proposed to α1 means that our agent does not have to
search for a new proposal, it already has z readily available in its memory.

5 Search Strategy

We will now explain the Genetic Algorithms (GA) that our agent applies to find
good deals to propose. For more background information about Genetic Algorithms
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we refer to, for example, [11] and [2]. To apply a Genetic Algorithm one needs to
model the elements of the search space as vectors, called chromosomes. Luckily,
in the ANAC-domain the possible deals are already given as vectors, so we do not
have to put any effort in this modeling. The chromosomes are simply the vectors x
as defined in Section 2.2. Our GA consists of the following steps:

1. Initial population: Randomly pick 120 vectors from Agrn. This is the initial
population.

2. Selection: Pick the 10 vectors with highest utility from the population. These are
the ‘survivors’.

3. Mutation: Pick another random vector from Agrn and add it to the survivors.
4. Cross-over: For each pair (v,w) of these 11 survivors, create two new vectors v′

and w′ (so in total we create 110 new vectors).
5. New population: The new population now consists of the 110 new vectors from

step 4, plus the 10 survivors from step 2. Go back to step 2, and repeat until
convergence, or until we have iterated 10 times.

After a number of iterations the population may contain the same vector more than
once. Therefore, when we pick the 10 vectors with highest utility in the selection
step, we mean the 10 best unique vectors. In other words: we first remove any dupli-
cates from the population and then pick the 10 best vectors. It may happen however
that the population has evolved so quickly that no more new unique vectors are
created by cross-over. In that case we say it has converged, and the GA is stopped.

5.1 Cross-over

A common way for a GA to apply cross-over, is to cut two vectors both in two
halves, and then gluing the first half of one vector to the second half of the other
vector and vice versa. We have however opted for a different kind of cross-over, in
which random vector-entries are swapped.

Suppose we have two vectors v,w ∈ Agrn. The cross-over mechanism will output
two vectors v′ and w′ as follows. It first generates a random vector r of dimension
n, where each entry ri has the value 0 with probability 50% or the value 1 with
probability 50%. Then, given the vectors v,w and r, the vectors v′ and w′ are defined
according to:

if ri = 0 then v′i = vi and w′i = wi

if ri = 1 then v′i = wi and w′i = vi

The reason that we have chosen for this type of cross-over, is that (as far as the
participants can know) there is no relation between the vector entries in the domain.
A constraint may for example involve the 3rd and the 7th entry, and there is no
reason to assume that consecutive entries are stronger related than non-consecutive
entries. This is reflected in our cross-over mechanism by the fact that it is symmetric
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under any permutation of the entries, whereas the regular cross-over mechanism has
a strong bias towards the survival of consecutive sequences of values.

5.2 Global Search vs. Local Search

As we can see in Algorithm 1, in each turn our agent applies two GAs.The first is
called the global GA, and the second one we call the local GA. The difference is that
in the global GA it picks vectors randomly from anywhere in the agreement space,
while in the local GA it only picks vectors that are close to the last proposal made by
the opponent. Specifically: there is a decreasing time-dependent function m2(t) and
our agent only picks vectors for which the Manhattan distance to the last proposal
made by the opponent is smaller than m2(t). The idea is that on one hand α1 wants
to maximize its own utility f1 and therefore searches for good deals anywhere in
the space, but on the other hand also needs to find proposals that are good for the
opponent so it applies a local GA to find good deals that are similar to the proposals
made by the opponent.

6 Offer Strategy

In lines 12-15 of Alg. 1 we see that the vectors returned by the GAs are added to a
set of potential proposals. After that, it is the task of the offer strategy to determine
which of those potential proposals should be proposed to the opponent (Alg. 1, line
16). In this section we use the notation d(x,y) to denote the Manhattan distance
between vectors x and y:

d(x,y) =
n

∑
i=1
|xi− yi|

For each vector x in the set of potential proposals the agent determines three proper-
ties, called utility, distance, and diversity, that will determine which deal is the best
to propose. The first of these properties, utility, is the most obvious: the higher our
agent’s utility f1(x), the better the deal.

Definition 3. The distance distt(x) of a vector x ∈ Agrn at time t, is the lowest
Manhattan distance between x and any proposal previously made by the opponent:

distt(x) = min{d(x,y) | y ∈H2→1(t)}

The idea is that, since our agent cannot know f2(x) it uses distt(x) as a measure
for the opponent’s utility instead. If distt(x) is low, then there is a high probability
that f2(x) is high. Therefore, our strategy prefers to propose deals with low distance.

Definition 4. The diversity divt(x) of a potential proposal x ∈ Agrn at time t is the
shortest Manhattan distance between x and any of the proposals previously made by
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our agent:
divt(x) = min{d(x,y) | y ∈H1→2(t)}

Our offer strategy prefers proposing deals with high diversity because this has two
advantages:

• If α2 rejected proposal v, and the vector w is close to v (i.e. divt(w) is low), then
it is likely that α2 will also reject w. So our agent should avoid proposing deals
that are similar to earlier rejected deals.

• By proposing more diverse offers, α1 gives the opponent more information about
its utility function f1, making it more easy for α2 to find proposals that are prof-
itable to α1.

Let us clarify this a bit more. Imagine that α1’s utility function has one very high
peak. That is: there is a small area inside Agrn where f1 is very high. Then α1 would
be inclined to only make proposals from that area. However, if the opponent’s utility
f2 is very low in that same area this will be an unsuccessful strategy. Now, suppose
that there are a number of other areas of Agrn where f1 is less high, but still high
enough to be proposed. Then by giving priority to deals with high diversity, we make
sure that α1 also makes proposals around those alternative peaks, hence increasing
the probability that for some of these proposals the opponent utility f2 will also be
high. Secondly, in this way α1 reveals to α2 the locations of the alternative peaks,
which also makes it easier for α2 to find deals that are profitable to α1.

We will now explain how utility, distance and diversity are used to determine
which proposal to make. This strategy depends on two time-dependent functions:
the aspiration level m1(t) and the maximum distance: m2(t). Let X denote the set of
potential proposals found by the local and global GAs. Then we define the subset
Y ⊆ X as:

Y = {y ∈ X | f1(y)≥ m1(t) ∧ distt(y)≤ m2(t)}

The deal that α1 will propose next is then defined as the element y∗ ∈Y with highest
diversity:

∀y ∈ Y : divt(y∗)≥ divt(y)

We see here that m1 acts as a minimum amount of utility α1 requires for itself, while
m2 acts as a minimum amount of utility that α1 considers necessary to offer to α2
(recall that low distance represents high opponent utility). We do not have space
to explain how m1 and m2 are calculated, but the important thing to know is that
both are decreasing functions of time. This means that as time passes, α1 requires
less and less utility for itself, while it forces itself to offer more and more utility
to α2. After all, the closer it gets to the deadline, the more desperate the agent will
get to make a proposal that gets accepted by the opponent. If there is more than
one potential proposal for which the utility is high enough and the distance is low
enough then α1 picks the one with highest diversity.
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7 Motivation for Using Manhattan Distance

Let us now explain why we have chosen to use the Manhattan distance in our defini-
tions. The idea is that we use distance to measure the difference between the utility
values of two deals. The closer two deals x and y are, the more likely that fi(x) is
close to fi(y). Indeed, the utility of a deal is determined by the constraints that it
satisfies and if two deals are close to each other then they are likely to satisfy the
same constraints. The question however, is which distance measure best reflects the
similarity in utility values.

Let c be a constraint that is satisfied by x, that is: x∈ sc. Now for each entry x j the
constraint defines two integers a j and b j which are unknown. This means that if we
increase or decrease x j by 1, there is a probability that x will no longer satisfy the
constraint as x j may ‘drop out’ of the interval [a j,b j]. If x j is in the interval [a j,b j]
then we denote the probability that x j +1 or x j−1 is not, by p:

P(x j±1 6∈ [a j,b j] | x j ∈ [a j,b j]) = p

Since we have no reason to assume that any entry j ∈ [1,n] is different from any
other entry, we can assume that p is equal for each entry j. Then the probability
of dropping out of the constraint after making k steps is pk, independent of the
directions of these steps. Specifically: it does not matter whether we take two steps
in the j = 1 direction or two steps in the j = 2 direction, or one step in the j = 1
direction and one step in the j = 2 direction. In other words, the probability that y
satisfies c equals pd(x,y) where d is the Manhattan distance.

Note that this is a direct consequence of the fact that constraints are defined by
rectangular subspaces. If they had been defined by spherical subspaces for example,
then the same reasoning would have lead us to use Euclidean distance.

8 Conclusions

The ANAC’14 competition had two categories: the individual category, in which
the agents where ranked according to the individual utility they obtained, and the
social category in which agents were ranked by the social utility, which is the sum
of the agent’s own utility and its opponent’s utility. Gangster ranked 3rd place int
the individual category, and 2nd place in the social category, among more than 20
participants. We conclude that our agent is a good negotiator and that Genetic Al-
gorithms are a good search technique for the given domain.

However, although the negotiation domains were very large, we think that this
may have had only very little influence on the success of the negotiators. The reason
for this belief is that when testing our GA on the largest test domain it was often able
to find deals with f1(x)> 0.95 in less than 70 ms. This is very short in comparison
to the total amount of 180 seconds available. Therefore, we think the success of a
participant depended more on its bargaining strategy than on its search algorithm.
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This is a pity, because the search was supposed to be the distinguishing property
of this year’s competition with respect to other years. We would therefore be very
interested to know what the results would have been if the deadlines had been much
shorter.
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